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Abstract

A physically intuitive non-resonantlocal mode axis tilting model for the inter-
pretation of higher overtone bands of X Hispecies is outlined and illust rated by
reference to the near-infrared of spectrum H,S.  Quantitative connections wit ht he
conventional normal mode resonance coupled picture are derived and local mode
bawd expressions for t he vibrat ional-rotational wavefunctions are given. Conist ants
are reported for the (31 1)-(212) and (302)-(203) bandsat 11008NW1 and 12149 ¢t
respectively.



I. Introduction

Despit et he comput at ional efliciency of convent ional normal mode t echniques for
t he analysis of rot ational-vibrational spectra.t he overtone bands of small symmet rical
hydrides have cert ain feat ures t hat favour an alt ernat ive local mode int erpret at ion.
Inthe first place local mode vibrational split t ings can become small compared with
rot at ional energy differences (1], Secondly t he condit ions that allow vibrat ional local-
ization also lead t o local mode relat ionships bet ween coeflicients in the vibrat ional-
rotational Hamiltonian [2].  Finally t he change from normal mode to local 1 node
charact er affects t he vibrat ional int eractions. 1 ‘ad icular at t ent ton has been given
to the effects of the Il t erms in t he Hamiltonian because resonance coupling terms
that are off diagonal in 1 g3 in normal coordinat ¢ t erminology become vibrationally
diagonal in an appropriate local mode representation [3-5], t hereby cont ribut ing an
inert ia t erm that lowers the apparent symmetry of the species in question.  The
strength of Coriolis coupling is also found to be progressively quenched as the local
mode linit is reached [6-8].

The first such local mode effects on rot at ional structure were report ed for NV Hy
by Ovchinnikova [3], and the clearest general formulat ion is by Lehmann [4]. The
most striking results to date apply t o X Hy hydrides, which were predict ed by normal
mode simulations [2], to snow symmetric top rot a ional st ructure in their |2000) local
mode bands. The observation of this effect, first for GeHy [9-10] and t hen for other
species [11-14], was followed by alocal mode interpretation [4,5] based on the use of
bond coordinates combined with an inertial axis t ransformation to allow quantization
around the uniquely excited bond. A detailed discussion of the spatial properties of
the local mode based rotational ecigenstates has also been given [15].

The present paper applies similar ideas to the overtone bands of X H, species,
with particular referenceto H,S. Fxperimen tally more than 30 bands are known for
the *S isotope [16-23] and an accurate potential surface has been deduced [24]. Many
of the higher bands show increasing evidence of t he four-fold clustering associated with
closc local mode degeneracies in near syminetric tops [2,4,24]. The present paper
was stimulated by the observation that, the onsct of an increasingly strong Hoa(or
alpha) resonance between essentially degenerat ¢ pairs of local vibrational states leads
to ambiguities in the rotational assignments. In addition, as discussed below, if the
constraint to Cz, symmetry is relaxed, alternat ive assignments lead t 0 an equally
accurate non-resonant simulation and the resulting spect roscopic absorption bands
have hybrid ctintact er. The physically int uit ive explanat ion, which was first advanced
by Lehmann is that eliminat ion of t he H,s resonance t erm can be accommodat ed by
a tilting of tile inertial axes. The purposeof this paper is to developt he detailed
theory of this local mode tilting effect.

The theory extends the work of lLukka atdHalonen [25] but follows Lehmann
[3] in transforming the quantization axis to liec perpendicular to the molecular plane,
inorder to facilitiat e t he axis tilt ing argument. The angle of tilt is then shown to
depend on the ratio between the Ha2resonance term Cry and the rot ational con-
stant asymmetry, A, -- I3,,in the resonant-normal mode description. Expressions
are given for the effective asymmetry in the uncoupled representation, local mode
forms for the symimetrised rovibrational wavefunctions, the relative A type and B



type transit ion amplitudesandt he first -order deviat ions from predict edlocal mode
vibrational-rotat ional degeneracies. Wang and Zhu [26] have recent ly considered t he
effects of rot at ionont hese near degencracies by analysis of the wavefunct ion in the
17 represent at ion

The main results of t he paper are highlight ed in section 3. Finally the t heory
is applied t o the overt one spectra of HoSin sect ion 4. The non-resonant local mode
model is shown t 0 become superior t 0 t he convent ional Coriolis resonance model for
the higher overtone bands, both for assignment purposes and for cwollolily in the num-
ber of fitting parameters. Therelative advantages of t he A" and AITI" reduct ion
schemes are also discussed. The former appears to be preferable fOr fitting purposes,
but the latter gives rise to relatively unmixed wavefunctions. The centrifugal distor-
tion constants in the AI1I" reduction arc also found to be much less sensitive to the
change from a resonant to a non-resonant model t han those in the AI™ reduct ion.

The local mode axis tilting model

The vibrational-rotational spectra of bent X Ha species arc normally analysed
in the I axis system [27], with the molecule inthe zz plane. It is however more
convenient for present purposes to employ the 1717 system, with z perpendicular to
this plane (see Fig. 1), so that the axis tilt occurs around the quantization axis.

Some notes on non-standard aspectsof t heliot at ion may be helpful. The first
and second quantumn numbers in the loc al mode symbol | nm) refer to bonds 7, and s
respectively, with the assumption thatn >>m. Symmetrised and antisymmet rised
combinations are denoted as usual by |nm=+).1t is also useful to emphasise geomet-
rical aspects of the axis tilting argument by recognising that r, is the predominantly
excited bond in state |nm) and 7o int he state |mn) Thus the int roduct ion of alter-
native surnbols| @) and|b) for [nm) and|mn) respectively, allows the use for H,, for
the vibrationally averaged rotational Hamilt onian with inertial axes tilted in response
to predominant excitat ion of 7, and similarly for He and - Corresponding notations
\JK)G and | J K), are adopted for symmetric top states defined with respect to the
two tilted axis systems, while|J K) without a subscript, is used for states defined
with respect, to the C2v inertial axes.

The relevant leading t erms oft he vibrational-rot at ional Hamilt onianint he 171"
system take the form [25].

f/he = G+ AJ2+ BJ24 CJ? (1)
. (a1 )JZ + (yl" ]2 + )Jz) (a({')Jf + (ygy)jg + aff)jf)
- (113(11(13(‘]1']1/ + ']y']f)-

Complications due to interaction with the binding mode ¢, may well be impor-
tant in practice, but they have no bearing on the tlltlnq mechanism. The Coriolis
term has also been omitted because it is known that Clg =0 (for our axis system)
in the local mode limit [2,4,6]. Local mode axis tilting is at tribut ed to competit ion
between normal rotational asymmetry associat ed wit h the difference (A — B) and the
final Ha2z resonance term in equation (1), in circumstances where vibrational energy



differences arising from t he vibrational operat or G, are small compared with the term
indys. The 2 x 2 matrix represent at ion of the vibrational operatoré‘v is diagonal
in the normal mode represent at ion, wit h elements t¢, and purely off-diagonal int he
local mode represent at ion, wit h clementse.

Following previous authors [25] we replace t he scaled normal coordinat es(qy, g3 )
by bond displacements (r,, 7, ) so that, wit hqr =(r,+7r,),/ V2, g3 = (re - 15),/V2,

H/he = G+ AJ2+ BJ2+CJ2 (2)
(724 f‘b)[ L LR S Ly
2i Tl ]24—00’J2+—a&)Jﬂ

+§ dys (72 = 72 ( oy + J,J,)

where

1
ol = 3 @+ o), ¢=2,y,2 3)
1
I Ry R @
o 1
TaTy = 5 (T 1o+ 123 pape) (9)

The parameter [ isthe scaling paramet er for harmonic oscillations of an indi-
vidual bond:

B=2(rcwy/h)? (6)
where wp is the bond frequency.

The assumed vibrational near-degeneracy now permits tile introduction of bond
localised states

|a) = |nm) , |b) = |mn) (7

in which the first and second quantum numbers specify excit ation in bonds 7, and ry,
respectively, with n >> 7nin the local mode limit. The resulting vibrational matrix
elements of H are convenient ly expressed int he forms

Hoo/he = AyJ2 4 ByJ2 + CJ? + Coy(Jody + Jy J.) (8a)
Hy/he = AyJ? + BJ2 4 CJ2 = Coy(Jody + Jy ) (8b)
Hea/he == € — 2{nm| 7,7y, |mn) [(y(f)]f + o j5 -+ oz(z)Jf] (8¢)



where

A, = A (1% o) ete (9)

(,v“/ =- ([]3 <(Sll> (10)

<r2>u: \/umllif + 77 mn> == <n | 15] n> + (m | 7"[: | m> (11)
<(5r2> = (nm | Fo nmy = ({77 ny - (m| 7| m) (12)

All other vibrational matrix clements are zero.  Moreover the off-diagonal term
H,, aso becomes vanishingly smallin the local mode limit because both the local
mode splitting, represented by 2e in the present notation, aud the « difference terms
o® £=2 y, 2 tend to zero [2,4,6].  Sccondly (nm | 7.7y | 7an) is subject to the
selection rule n—m-==41in the harinonic limit and it is assumed that n >> m.

Equations (8a),(8b),(10) and (12) show that the Iy, resonance term in normal
mode theory appears in local mode theory as an off-diagonal inertial term, with a
magnitude that depends onthe disparity between the mean squared displacements
of the two inequivalently excited bonds. The sign difference between (8a) and (8b)
dictates an axis tilt to principal axes inonec direction or the other according to whether
T4 0r Ty is the longer bond (seec Fig. 1).

The transformation to the principal axes of f/,, may be expressed in the form

J _ cosm  —sin J@
( Jy ) B ( sing  cos 7) ( e (13)
jz = j(a)

where the superscript @ designates principal axes in local mode state|a) H,, itself
reduces to

1
2
1 7(a)? — j{a)?
+y A — B)eps (JE = )

Haafhe = - (A, + BYJW 4]0 + ¢, J@? (14)

The quantities of 7 and (A — I3).ss arc given by
tan(2y) = [4C,,/ (A, — Bu)] (15)

(A = B)epr=[(A, = B.)* +4C2 )2 (16)

Equations (14)- (17) were first given by Lehmann [4], but their consequences were
not fully explored. The corresponding t ransformat ion of Hy, yields a form identical
with equation (15),apart from the obvious subst it ution of & for a t hroughout, and the
sign of n, which specifies the orient at ion of the t ransformed axes is reversal.  Fig. 1.
which is derived from data intable 2 below, illustrates the two axis tilted states for
the | nm+,v2 >=140+4, 1) states of I,S. Theeffect ive A and I3 constants, given

<t



by equat ion (16) are 1 0.2007¢ m ' and 8.5689m ' respect ively and t he tilt ing angle.
given by equation (15)is 30.95°.

The conclusion is t hat the Hy; resonance t erm, which couples vibrational states
of different symmetry in normal mode t heory, can be transformed by local mode ar-
guments t 0 appear as an addit ional contributiont o the specific rotational asyminetry
(A - B)ess- All rotational st ates are alsseen t o be exact ly doubly degenerat e in
t he local mode limnit; alt hough t he cigenfunct ions of H e and His will be shown below
to differ by virtue of t he difference in sign at t ached to t he tilt ing angle 7. This
result also has a physically appealing int erpretat ion in the sense that the ‘normal’
contribution (A, — B,) t o (A —I3).s; may be associated with deviat ions of the bend
angle from 90°, because a rigid symmetic species with orthogonal bonds is an acci-
dental symmetric top. Fquations (10) and (12) show that the additional term CZ,
in equation (16) arises from adifference in mean squared displacements between the
two bonds.

One must of course recognize that even the slightest deviation from strict, 1ocal
mode behavior will restore the proper symmetry or antisymmetry of the eigenstates.
Hence it is convenient to express the eigenstates in the J©@ and J® representation
to those in the original symmetrical Jrepresentation. To this end it may be noted
from equation (13) that

jﬁf’) - jﬁ(t) +q j}sa) = eting, (173)
while . . . ,
JO = JO 40 JO = v, (17b)
Thus the phase modified basis functions
|JK), =N )T K) (18a)
|J K), = ™) K) (18b)

may be verified to satisfy the normal angular momentum relations.
JI K, = K|JK), (19)
JINTKY, = JU+1) - K(KFD)2|J K- 1),

for i = a b. Consequently the cigenfunctions of f,, and i may both be expressed
in the form

I Ko K., = Z CrolJ K o), (20)
K

where the coefficients ¢, are independent of 7 and |JK ), are the appropriate Wang
combinations

1] K o)y = (JK),+ (-1 |J-K))/(1+ éxo)? (21a)
=cos(nK)|J K a) -t- isin(nK)|J K o -t 1)
T K o), = (TK), +(~1)°J-K),)/(1 + dx0)* (21b)

=cos(nK)|J K a) - isin(nK){J K o+ 1)
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The sccond line of equat ions (210) and ( 21b) have been derived with the help of
equat ions (18a)and ( 18b). K. inequat ion (20) is equal to the K value of the
leading term of t he sum and A, is evenor odd according to t he evenness or oddniess
of (J + K.+ o). Finally it remains t o symmetrize the theory by combining equat ions
(21a)and (21b) wit h appropriat e vibrat ional fad ors|a) =[nm)and|b) = [mn ). The
resulting symmetry adapt ed local vibrational-rot ational eigenstates take t he form

|J K, K.&+) = ZC’KU[IJKU)G |nim) + [JKo), |mn)]//2 (22)
K
Z Crolcos(nK)|J I a) lnm=)
K

+i sin(nk)|J K o+ 1) [nmT))

where|nm=) are the symmetry adapt ed vibrational stat es

[nmt) = (la) £ |b))//2 = (|nm) £ [mn))//2 (23)

Equation (22) isonc of the main results of the theory.

Notice that the symmetrical form of cquation (22) clearly separates the axis
switching termsinnK from the rotational basis fund ions | JK o) which ate quant ized
in the symmetrical (z,y,z) axis frame. Consequently the spectroscopic absorption
intensities may be estimated interins of normal Honl-London factors. Traditions
from the ground vibrational state, denoted by |0), to the |nm+) and jnm—) states are
polarised inthey and 2 direction respectively. Hence the dipole transition matrix
elements may bc expressed as

O] g1 [nmn+)
(0] p |lnm—)

Hp Y (24)

fad

!
i

1l

where Z and ¢ are the angular parts of the transition amplitudes.
When combined with the form of the ground rotational eigenstate

J” (I/ (// ZCI\“ . I]H] //U//> (25)

]\ 11

equations (22) - (2.5) imply that

(J'K!K 0| | IR K ) = Z CroCrrgnlpty ¢ (J"K"d"| §|JKo) (26a)
KK
+pg s(J'K"a"| 2] K 04 1)]

while

<]NK”](” 0. i IJ]\ I((" _) Z CK (1\”0”[/1/\ C <JU](”(J'”{ |][((7> (2()}))
K,K"

'*/U;S(J” /II IllJ'JKU+ I)]



where ¢ = cos(ni)and s = sin(nk’).

The form of equation (22) also allows asimple estimate of the first order effect
of the vibrational oft-diagonal operator H,,, which is assumed for simplicit, to be
dominated by t he local mode split ting term € in equat ion (8c¢). The present assumyp-
tion is that t hese ofl-diagonal t erms are necessarily small compared wit hdis thut they
could nevert Mess be large compared wit h the asymnet ry splitting of the high i’
rotational cigenvalues.

Bearing in mind that the vibrational operat or G, is diagonal in the symmet rised
local mode states,

(nm+| Gy [mnd) = - (nm-| o, |nm—) =€ (27)

and that | JKo)and|JKo')in equation (22) arc orthogonal, the first order corrections
to the energies oft he previously degenerate rot at ional-vibrational states | J K K .;+)
arc thereby deduced to be

(JKo K H Go [T K 4) = 4e ) Ck,(cos’(nK) — sin’(nK)) (28)

= e Z C2 cos(2nK)

K

In other words the axis tilting, which is mecasured by the angle 7, serves to quench
the local mode splitting from its purely vibrational value. The possibility of such
local mode enhancement by rotation was first suggested by Lehmann [4]. Wang and
Zhu [26] reach similar conclusions for 2/>S inthe I™ representation by performing less
physically transparent rotations about they axis.

I1l. Implications of the model

The above axis tilting model is not primarily offered as a new computat ional
tool, because for example the effects of centrifugal terms have been omitted. The
intention is rather to provide anew framework for t he interpretation of computational
and experiment a results.

The first consideration in t helocal mode limit is that the rotational analysis
of excited ¢, and g3 states be carried forward equivalently eitlier with or wit bout a
constraint to impose Co, symmetry. The resulting parameters in the former case will
be ‘normal’ rotational constants A,, I3, and C, and a Coriolis resonance parameter
('ly(or Cy.inI” rot at ion). The sccoudapproach on the other hand will yield only
t hree rotational paramecters s (A, 41,),C, and anasymmet ry term (A -- B).s, given
according to equation(16)t»y

(A= B)egs = [(As = B.)? + 4C2, )2 (29)

Strict double degeneracy in all rotational-vibrational encrgy levels is also predict ed
in the local mode limnit.

A second implication of the theory is thatt he loss of information inherent in a
three parameter simple vibrational stat ¢ anlaysis as distinct from a four paramct cr
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coupled vibrational one. can in principle be remedied by a careful intensity analysis,
because equations (26a) and (26b) show that t he transition amplit udes are modified
by t erms dependent on the axis tilt ing angle 7. which depends according to (15) on
the ratio of C,, to (A, - 13,).

The final conclusion is that t heintroduction of a vibrat ional energy split t ing
between t he t wo 10GI mode states, which is small compared with the anharmonic
resonarice paramet er C,,,, will serve to lift t he rot ational-vibrational degeneracy of all
other stat es in accordance with t he formula in (29). It would be int cresting to find
cases in which 7) could be deduced by use of equation (29).

One should also notice that a fully coupled version of the t heory could be ob-
tained by including t he vibrationally off-diagonal operator Ho given by equation
(8c). The necessary matrix elements would however involve phase factors 2K
arising from overlap between|J K), and | J K), , as given by (18a) and (18b). The
hermitian character of the resulting Hamiltonian matrix is therefore computationally
less convenient than the conventional real normal mode form.

IV. Local mode axis tilting in H,S

Tile local mode character of the overtone bands of H2S is well attest ed on the
basis of the 30 different analysed bands [14-21]. In particular thelocal mode split-
tings for the |[nmd; vy) = |304:; O) and |30; 1) st ates at 7976c¢m ™! and 8697cm ™! arc
reported [22] as 0.163C~/I- 'and 0.013cm 1 respectively, while these for the correspond-
ing 1404; v2 > states a 9911cm™ 'and 11009cm- ! arc less than 0.001 cm ™. The o
values derived from a global fit of the analysed bands (o® = —0.016, a® = 0.016
and @ = O 008c¢im™ 1) are also small cnough t o justify neglect of the off-diagonal
operator Hap in equation (8c), compared with C,, >~ 0.5 — 0.6¢crm™ ' Experimental
details of the bands which are discussed below are listed in table 2.

As a direct test. of the theory inscction 2, the previously reported|404; O) and
[40+;1) bands (corresponding to (301)-(202) and (311)-(212) in conventional nota-
tion) [22] were reanalysedinthe [I1I" representation, both as resonantly coupled
interacting pairs and as isolated hybrid bands. The derived spectroscopic parame-
ters arc given in table 2. It is evident that the quality of the fit is, if anyt hing, slightly
better for the isolat ed state analysis, despite the reduction from 10 to 9 paramet ers.
The isolated state Aand /3 rotational constants are also secn to be well approximated
by the estimated values it 1 parent heses, Which were derived from t he 4, B, and Cry
constants by means of equation (16). Finally the remaining parameters differ by
only a few percent in going from one form of analysis to the other.

It is aso interesting to perform a similar comparison between ‘int tract ing stat ¢’
and ‘isolat ed state’ analysesin the /" represent at ion, which is normally preferred for
Hy X species. Relevant data for the |40:+;1) and |504; O) (or (31 1)-(212) and (203)-
(302)) energy levels with J < 8are givenin t able 3; more ext ensive data for these
local mode pairs will be published elsewhere [28]. Notice that the assignments are
much more straightforward in the isolated band picture because the energy increases
monotonically with increasing K,, whereas there are numerous examples of inverted
level posit ions whent he stat esaret reated as int eracting, pairs.  The resulting spec-

9



troscopic parameters in t able 4 again show t hilt t heisolat ed band analyses achieve a
better fit to the (311 )-(212) bands with one fewer parameter, and an equally good
fit for tile (302)-(203) bands with nine fewer parameters (assuning that four levels
that are perturbed by dark states ['23] and poorly determined levels with 3 < 11 were
excluded from the fit). FEstimated A, pp and B, s constants, obtained by substituting
C,:for 'y in equation (16) are in excellent agrecment with the optimised values for
the isolated state fit tothe (311)-(212) band,and aso with the corresponding entries
given for the I1]" analysis intable 2. The agreement is less good for the (302)-
(203) band, possibly due to the assumed influence of pert urbations during the fit
[23]. The final observation is that the ‘interacting state’ analyses lead to drastically
different values for the distortion constants, when the analysis is performedin the 7
representation, whercas only minor changes occurred in the 77717 representation.

In comparing the two represent ations, it is seen, as expected, that the rms devi-
ations for (311)-(212) band issmaller inthe /™ than in the 171" representation.  On
the other hand the rational for the isolated band, axis tilting, analysisis much clearer
from the I1I" viewpoint. Secondly the relative insenitivity of the distortion con-
stants to changes between the ‘interacting state’ and ‘isolated state’ pictures in the
I11" representation, suggests that these constants have greater physical significance
than those obtained by the I fitting procedure.

V. Conclusions

Previously known local mode transformations to the conventional normal mode
rotation-vibrational Hamiltonian [25] have been extended, by transformation to the
111" representation, to show that t he conventional Coriolis coupled rotational analysis
between two degenerate vibrational states (inthe local mode limit,) is equivalent to
two degenerat ¢ isolated state analyses applicable t o molecules with Csyminetry, with
inertial axes tilt ed cither clockwise or anticlockwise with respect t o the equilibrium
symmetry axes. quations (15) and (16) give expressions for the angle of tilt, 7,
and the effective A and I3 crest ants for the isolat ed state analysis,in terms of the
conventional A,, B, rotational andC,,resonance constants. The angle of tilt is
also related to the difference bet ween mean squared vibrational amplit udes of the
two bonds. Local mode t ype expression for t he vibrational-rot at ional wavefunctions
are given inequat ion (22) and used t o derive formulae for the A typeand Bt ype
t ransition amplitudes oft he hybrid bandsint erms oft he angle oft ilt and conventional
Honl-London factors. A further result, given in equation (29), is that t he vibrational -
rotational level split t ings are predict ed t o be quenched from their purely vibrational
values in a manner dependent on t he product ..

Applications of thetheorytothe (301 )-(202) and (302)-(203) t rands of H,S fully
support the above pict ure.  New ‘isolated band’ analyses for the (31 1)-(212) and
(302)-(203) bands were also performedin the traditional 1" represent at ion. The fit
to observed data is superior to that obt ained by the usual 22 coupled model, and t he
number of derived paramectersisreduced. Incomparing t he I’ and 111" representa-
t ions, it found that t he former gives abet ter fit t ot he data, but that the distort ion
parameters obtained by t he I analysis dif fer (Drastically according to whether the

10



‘coupled state€' or ‘isolatedstate’ moclels were used. By contrast only minor changes
to the distortion cent ants arise int he//J/ " representat ion.  The conclusion is that the
I" representat ion is superior for fit t ing purposes, but that parameters derived from
the /11" representationmay have greater physical significance.
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Figure caption
Fig. 1. Schematic representation of the degenerate isolated titled axis states. Thetilting angle = 31" is consistent

with the constants A., B, and C,, for the (3 11) - (212) states of H Sin table 2. The large symbol for one of the

atoms indicates the more excited bond.

Table 1

Vibrational States of 1,S Studied

Local Resonating Band Centres Precision Instrument
mode Pairs Ref. of energies and
notation C,, Symmetry cm’! cm’ Resolution
nm# v,
40+ 0 (301), (202) 9911. 20 0.003 FTS 0.021 cm™!
40+ 1 (311), (212) 11008. 20 0.003 FTS 0.021 cm-’
50+ 0 (302). (203) | 12149, |21 | diode laser 0.01 cm” |




Table 2

Spectroscopic parameters (cm™) of the |402:0>and j40:: 1 >or [ (301) - (202) and (31 1)- (2 12)] vibrational states
of the H,S molecule from the resonance and nonresonance fitting using a Watson-type 11" Hamiltonian

(301)-(202)

|solated

Estimated

31 1)-(212)

Isolated Estimated
E, 991 1.02470(280) 991 1.02600(260) 11008.69100(230) 11008.69100(210)
A 9.689976(420) 9.871477(390) (9.879) 9.980428(42) 10.200505(440) (10.184)
B 8.539932(420) 8.357874(350) (8.351) 8.789340(420) 8.5692 11(340) (8.584)
c 4.4742 15(100) 4.4752867(900) 4.4143399(950) 4.4143973(780
D, 10° 0.78381(150) 0.75940(1 10) 1.09390(280) 1.0723(140)
D,l 0 -0.16956(160) -0.16628(100) -0.216790(270) -0.2 1528(140)
D,10° 0.974893(750) 0.96655(1 10) 1. 147299(700) 1. 144248(700)
d, 103 0.16170(660) 0. | 594(400) O. 1386(105) 0.1229(490)
d, 103 0.1 1541(380) 0.09088(290) 0.19802(480) 0.14049(390)
o 0.4914878(150) 0.557708(130)
Jas 13 13 13 13
N levels 141 70 139 70
N param. 10 9 10 9
RMS 0.00956 0.00899 0.00697 0.00690

deviation
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C,, symmetry

(3

Eobs

11008.684

) (22

Eobs

11021.669 11021.670

027.451
1045.107
1044.711

11057.555
1062.44
11065.355
11076.336
11076.272
1 099.518
o ..349
.604
1112 2==
1 22.980
650
6.506
50 65
50.2282
76.5
7 .665
.84, 65
1 199=57
200.778
65.524
11165.524
11209.286
11209.210
11243.297
11241.756
270732
1126 .18
11275.775
11298.449
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11023.301

11027.459

1045 5
o44.7 6

11062.440

11076.335
11076.270
11099.517
11101.356
11111.604
11121.299
11122.979
11116.506
11116.510
11150.641
11150.237

11171.672
11184.166
11199.955
11200.783
11165.524
11165.524

1 243.293
11241.753
11270.721

11275.765

11298.449

11101.3519

11261

Table 3

Two methods for the assignment of the experimental rotational energy levels (cm™)

C, symmetry
(isolated)

Eobs dE

11208.6843 -3
11221.6697 0O
11023.3008 -2
110274573 2

1044.7 26 -2

11045.1116 1
11057.5557 O
11062.4430 -5
11065.3574 2

1076.27 -1
1076.3359 |
1099.5178 0O
-1
.6043

1112 2333 -2
1

22.9800 -

11116.5065

50.24co
50 6508
71.6721 1
76.5123
84 067
99.9555
1200.7724
65.52 2
05.52 1
20921 9 0

3
6.5105 0O
4
!

11209.2880 7

1241.75 .6 -10
1243.2358 3
804 -7
21723 0

11275.7697 -2

298.4480 1

C,, symmetry

(203) (302)

Eobs

12 .49.4603
12161.9961
2 .63.6868
12167 .42
12 850259
12 84.5726
12196.1820
12201.2424
2203.7256
122 5.7963
22 577 %o
2228.8084
12236.7424
2247.754

12257.7638
2259.1012

12286.7393
12286.2227
12310.757
12305.37 6
12317. 369
23334 7
22240 o6

12344.0479
12343.9454
2375.2349
23722722
12401.0633
12390.6535

Eobs

12149.458
1216 .9:37
12163.6868
2 67.4003
12 2350342
.2184.5773
2 96 878
220 .2452
2203.7200
122 5.7929
12215.7 20
12228.8037
2226.73244
2247.7582

12257.769
2259. 024

12255.4946
12255.4880
12286.7390
12286.2264
12310.7599
.2205.3847
122 7 354
12333.4079
123340 .50
123040292

12344.0426
2343.9452

50+;0> or [(311), (212), (203) and (302)] vibrational states of the H,S molecule.

C, symmetry
(isolated)

Eobs

12149.458
2161.9937
12 63.6868
2167.4009
2 .84.5773
12185.0342
2196. 878
12201.2452
12203.7200
12215.7130
12215.7929
12236.7344
12238.8037
.2247.7583
12257.7691
12259.1024
12255.4880
2255.4946

12286.7390

2305.3847
12310.7599
12317 1354
12333.4079
122240 50

2304.0392

12343.9452
12344.0426

dE

0
-1

1
4
-3
6
0
5

0
12
2
-1
2
6
0

4
4

123752390 12373.3790**
12373.3790 12375.2390 -5
12401.0666 12390.6598 -5
12390.6598 12401.06066 -8
12405079 24042975 12404.9975 -12
12428.2442 12428.2398 12428.2398 2



Table 3 (continued)

0 11298.811 11298.809 11298.8089 2 12428.4895 12428.4859 12428.4859 6
6 11223.333 11223.333 11223.3354 -1 12361.3717 “12361.3659 -6
6 11223.333 11223.333 11223.3354 -1 12361.3659 12361.3717 -1
5 11276.817 11276.819 11276.8184 7 12410.2618 12410.2585 14
5 11276.819 11276.817 11276.8184 -] 12410.2585 12410.2618 2
4 11320.100 12449.8293 12449.8175 12449.3636-11
4 11319,744 11319.744 11320.0998**  12449.3651 12449.3636 12449.8175-11

55
60
61
61
6 2
6 2
6 3
6 3 3 11354.269 11354.262 11350.2448 -4 12481.3684 12481.3780 12476.5408-15

64 3 11350.243 11350.247 11354.2711 9 12476.5408 12481.3780 O
64 2 11384.114 11368.4030 5 12509.9425 12509.9423 12493.0830 13
6 5 2 11368.402 11368.403 11384.1134 -7 12493.0816 12493.0830 12509.9423 -1
651 11387.009 11387.0198 3 12512.0324 12512.0307 12512.0307 2
661 11416.738 11416.7372 2 12542.3038 12542.3041 12542.3041 -4
6 60 11416.881 11416.8797 -O 12542.3952 12542.4009 12542.4009 2
7 07 11289.949 11289.949 11289.9534 2 12427.4965 12427.4843 -5
7 1 7 11289.949 11289.949 11289.9534 2 12427.4843 12427.4965 6
71 6 11353.152 11353.152 11353.1529 -3 12485.2758 12485.2787 8
7 2 6 11353.152 11353.152 11353.1529 -5 12485.2787 12485.2758 3
725 11405.9555 0 12533.6118 12533.5294 0
7 3 5 11405.953 12533.5193 12533.5294 12533.6118 -2
734 11447.6106** 12572.7779 12571.2726 4
7 4 4 11447.610 12571.2726 12572.7779 10
743 11475.3738 5 12605.3499 12605.3499* *
752 12637.5655 12637.5655**
762 11516.7720 -2

761 11518.2451 3 12638.6048 12638.6048* *
7 7 1 11554.720 11554.7187 -5 12675.6536 12675.6453 12675.6453 -1
770 11554.786 11554.7847 5 12675.6787 12675.6787 O
8 0 8 11365.350 11365.350 11365.3511 O

8 1 8 11365.350 11365.350 11365.3511 O 12502.3755 12502.3755 -3
8 1 7 11438.263 11438.263 11438.2675 -1 12569.0563 12569.0434 -2
8 2 7 11438.263 11438.263 11438.2675 -1 12569.0434 12569.0563 10
826 12626.2254 12626.2199 12626.2199 -1
8 3 6 11500.728 12626.2201 12626.2201-15
835 12673.9107 12673.5502-10
845 12673.5502 12673.9107 6

*) Rotationa energy levels for C2V assignment were taken
from Ref. 20 for(311 ) and (2 12) sates and from Ref.21
for (203) and (302) states.

dE=(Eobs-Ecalc)x 1000 cm- Ifor Cs symmetry energy levels

**- Levels were excluded from the fitting.



Table 4
Spectroscopic parameters (cm™) of the [404 ;1> and {501 :0>or [(3 1)-(212) and (203)-(302)] vibrational

states of the H,S molecule from resonance and nonresonance fitting using a Watson-type I Hamiltonian

B1D-(212) Isolated Estimated (302)-(203) Isolated Estimated
ref.[20] ref. [21]
E 11008.6836 11008.68747(130) 12149.4580 12149.45744(280)
A, 9.92916 10.202834(380) (10,20125 9.4749975 9.819851(790) (9.71755)
B, 8.84191 8570033(1 10) | (8.56981) 8.471912 8.128625(300) (8.22935)
c* 4.41553 4.4138781(330) 4.4111438 4.409495(130)
D, 10 0.4067 0.12893(230) 0.4443236 0.03337(450)
D, 10 -23.682 -0.8027(420) -26.12636 6.735(160)
D,10° 0.65609 | 0.449906(280) | 0.575537 0.27681(120) |
410 -0.06 0.78487(250) -0.439822 0.6281(100)
d, 10 0.29705 0.193521(150) 0.2547141 0. 104021(760)
H,10° 0.283 0.3381(300) 0.46069 0.7920(610)
h, 10° 0.1229 -0.3643(490)
C,, 0.608171 0.549675
T 9 14 14 1
N levels 129 84 128 77
(for both states) (for both states)
N param. 9 10 20 11
RMS 0.005 0.0038 0.0074 0.0074
deviation







